An introduction to pattern recognition: A MATLAB approach by Theodoridis S., et al.

By Theodoridis S., et al.

An accompanying handbook to Theodoridis/Koutroumbas, development acceptance, that comes with Matlab code of the most typical tools and algorithms within the ebook, including a descriptive precis and solved examples, and together with real-life facts units in imaging and audio acceptance. *Matlab code and descriptive precis of the commonest equipment and algorithms in Theodoridis/Koutroumbas, development popularity 4e.*Solved examples in Matlab, together with real-life information units in imaging and audio recognition*Available individually or at a distinct package deal cost with the most textual content (ISBN for package deal: 978-0-12-374491-3)

Best software: systems: scientific computing books

Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab

This can be an introductory to intermediate point textual content at the technological know-how of photograph processing, which employs the Matlab programming language to demonstrate a few of the undemanding, key ideas in smooth picture processing and trend popularity. The procedure taken is basically sensible and the booklet bargains a framework in which the innovations could be understood by means of a sequence of good selected examples, workouts and desktop experiments, drawing on particular examples from inside technological know-how, drugs and engineering.

Wahrscheinlichkeitsrechnung und Statistik mit MATLAB, 2. Auflage

In 2. Auflage noch übersichtlicher: Erneut führt der Autor praxisorientiert in die Werkzeuge der Wahrscheinlichkeitsrechnung ein. Er beschreibt zentrale Begriffe und Methoden der angewandten mathematischen Statistik und diskutiert statistische Verfahren. Hierzu verwendet er hauptsächlich MATLAB. Dies erlaubt die Diskussion praxisorientierter Beispiele und erhöht aufgrund der Visualisierung die Verständlichkeit.

Mathematische Probleme lösen mit Maple

Mathematische Probleme l? sen mit MAPLE richtet sich an- Uni-, FH, PH-Studenten als Begleitung zu den Mathematik-Grundvorlesungen,- Ingenieure als Erg? nzung zu ihren Mathematikgrundlagen- Praktiker, die konkrete mathematische Probleme am machine l? sen m? chten. Grundlegende mathematische Probleme sind teilweise sehr aufwendig in keeping with Hand zu l?

Additional info for An introduction to pattern recognition: A MATLAB approach

Example text

Step 5. 2, 20, 200. 2 1. Generate a 2-dimensional data set X1 (training set) as follows. Consider the nine squares [i, i + 1] × [ j, j + 1], i = 0, 1, 2, j = 0, 1, 2 and draw randomly from each one 30 uniformly distributed points. The points that stem from squares for which i + j is even (odd) are assigned to class +1 (−1) (reminiscent of the white and black squares on a chessboard). 1, set the seed for rand at 0 for X1 and 100 for X2 ). 2. 001. Compute the training and test errors and count the number of support vectors.

8]; S(:,:,1)=S;S(:,:,2)=S; P=[1/2 1/2]'; N_1=1000; randn('seed',0) [X1,y1]=generate_gauss_classes(m,S,P,N_1); N_2=5000; randn('seed',100) [X2,y2]=generate_gauss_classes(m,S,P,N_2); Step 2. 12%. Note that different seeds for the randn function are likely to lead to slightly different results. 1 for k = 1,7,15. For each case compute the classification error rate. Compare the results with the error rate obtained by the optimal Bayesian classifier, using the true values of the mean and the covariance matrix.

Use the Rotate 3D button to view the data set from different angles. Next, define the c × N1 dimensional matrix z1 , each column of which corresponds to a training point. Specifically, its ith column elements equal zero except one, which equals unity. The position of the latter indicates the class where the corresponding vector xi of X1 belongs. z1=zeros(c,N1); for i=1:N1 z1(y1(i),i)=1; end 42 CHAPTER 2 Classifiers Based on Cost Function Optimization In a similar manner, generate X2 and z2 .